
Extended Abstract
Motivation We implement Direct Preference Optimization (DPO) and curriculum learning methods
to fine-tune the Qwen 2.5 0.5B base model on instruction-following tasks. More specifically, we
study the effect of curriculum learning DPO on performance in comparison to the base approach.
We are interested in the application of curriculum learning to supervised learning tasks in computer
vision; previous studies [1] have examined the effect of this training approach in object detection and
instance segmentation experiments and show faster convergence and more accurate results (especially
for unbalanced datasets). We wanted to study its application in the fine-tuning of large language
models.

Method In contrast to the standard RLHF approach of using a trained reward model to evaluate the
performance of the fine-tuned policy, DPO directly optimizes over the model using a parameterized
loss function in closed form. We run supervised fine-tuning on the Qwen base model using an
instruction dataset and then DPO on a preference dataset of more advanced instructions. We then
analyze two approaches to curriculum learning: the standard non-iterative approach (using the SFT
model as the reference model) and an iterative approach, where the reference model is continuously
updated after each iteration. The intuition behind curriculum learning is that preference pairs that are
more dissimilar (i.e. one response is more clearly better) are easier for the model to learn and thus
should be trained on first. Once the model improves on easier data, it is trained on harder examples.

Implementation In order to implement curriculum learning DPO, we process the original Ultra-
Feedback dataset into sets of preference pairs. The original UltraFeedback dataset has 4 responses
to a prompt, each response scored by GPT-4 on criteria like truthfulness and accuracy. We take
the highest-scored response and create 3 preference pairs with the other lower-scoring responses,
filtering out any pairs with the same quality. We then rank all pairs across the dataset by absolute
score difference. The easiest pairs to learn (the pairs with the largest gap in scores) are fed into the
model first.

Results We see improvement in the instruction following task for all DPO approaches in comparison
the base SFT model. However, the standard DPO approach scored more highly in comparison to
both the iterative and non-iterative curriculum learning approaches (with the non-iterative approach
performing the worst).

Discussion We don’t see any improvements in the instruction following task with a curriculum
learning approach. We hypothesize this could be for several reasons. One, we only perform one
epoch of training for each approach due to limited compute. It is possible that the benefits of
curriculum learning require multiple epochs to become visible. Second, previous literature suggests
that curriculum learning might be most effective when the dataset of examples is unbalanced and the
model loss doesn’t initially decrease. In this way, the curriculum approach can "kickstart" the learning
process. Because we already performed supervised fine-tuning on the smol-smoltalk dataset, our
model was already warm-started and simply might not have needed curriculum learning to perform
well on harder examples. Additionally, the preference dataset included a wide and balanced range
of preference pair difficulties. Future work in this area should test the effect of curriculum learning
on non-warmstarted models, although even if proven effective here it might still be unnecessary in
practical applications.

Conclusion In the SFT → DPO pipeline we used to fine-tune a large language model on instruction
following tasks, the use of curriculum learning DPO was not shown to be effective at improving
performance. We saw improvements over the SFT-trained model but lower scores than the standard
DPO approach. We believe the use of SFT to warm-start the model, and the balanced nature of the
preference dataset, negated any advantanges that curriculum learning can offer.
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Abstract

We implement Direct Preference Optimization (DPO) and curriculum learning
methods to fine-tune the Qwen 2.5 0.5B base model on instruction-following tasks.
More specifically, we study the effect of curriculum learning DPO on performance
in comparison to the base approach. We analyze two approaches to curriculum
learning: the standard non-iterative approach (using the SFT model as the reference
model) and an iterative approach, where the reference model is continuously
updated after each iteration. We find improvement in all three DPO approaches
over the SFT baseline, but curriculum learning offered no performance benefit over
the standard DPO training. We believe the use of SFT to warm-start the model,
and the balanced nature of the preference dataset, negated any advantanges that
curriculum learning can offer.
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1 Introduction

We explore the implementation of RL algorithms to improve performance on large language models
(LLMs). Although pretraining is effective at producing intelligible text, outputs to prompts often lack
precision. Reinforcement learning (RL) addresses some of the short-comings of simple pretrained
models. First, it aligns the model with human preferences. Reward models are used to judge responses
along pre-set criteria, such as truthfulness and helpfulness, which enables the base model to align
itself more closely with these values. When humans, or reward models trained to mimic human
preferences, indicate one response as preferable over another, the model learns these differences.
Second, the RL pipeline optimizes base models on downstream tasks performance. Rather than just
imitating existing data, RL methods can surpass expert performance by optimizing for an objective
reward (rather than the expert’s performance as the goal).

We implement the Direct Preference Optimization (DPO) RL method to fine-tune the Qwen 2.5
0.5B base model on instruction-following tasks. The mechanism of DPO is relatively simple: the
data consists of a prompt, a preferred response, and a dispreferred response, and the loss objective
encourages the model to minimize distance to the preferred response and decrease likelihood of the
dispreferred response. We explore two extensions to the standard DPO model: sequential curriculum
learning and categorical learning. The intuition behind curriculum learning is that the model should
start training with easier pairwise examples (responses that are more dissimilar) and slowly increase
the difficulty in training examples. This can be done by scoring preferential data (e.g. response A is 2x
worse than response B) and ordering the input data by difficulty. Sequential ordering is an objective
easiest to hardest ordering of all response pairs, while categorical ordering breaks difficulties into
buckets that response pairs are grouped into.

2 Related Work

We use the vanilla version of DPO as proposed in "Direct Preference Optimization: Your Language
Model is Secretly a Reward Model" [2]. The DPO algorithm is an improvement over the more
traditional reinforcement learning from human feedback (RLHF) approaches. RLHF is a complex
mechanism and often unstable; it trains a reward model to reflect human preferences and then uses
RL to fine-tune the base model to maximize this estimated reward without straying too far from the
original model. The DPO method introduces a new parameterization of the RLHF reward model that
extracts the optimal policy in closed form and enables the use of a simple classification loss function.
The resulting algorithm is more stable, more performant, and computationally lighter.

We implemented DPO with curriculum learning as our extension to compare it to the DPO baseline,
as proposed in Curri-DPO: Enhancing Alignment using Curriculum Learning & Ranked Preferences
[3]. The hypothesis of Curri-DPO is two-fold:

1. Using multiple preference pairs per prompt acts as a form of data augmentation, similar to
computer vision training methods using rotated or skewed images as additional training data

2. Systematically introducing these preference pairs by relative quality rating into the model
improves over the base approach to training

The authors find a 7.5% improvement in performance using Curri-DPO in comparison to the base
DPO approach.

3 Approach

3.1 Supervised Fine-Tuning

We first start by fine-tuning the base Qwen 2.5 0.5B model using SFT on a lighter version of
the Smoltalk databsase: smol-smoltak [4]. Smoltalk is a sythentic dataset of 1M samples aimed to
improve model instruction following and covers a diverse range of tasks, such as text editing, rewriting,
summarization, and reasoning. The smol-smoltalk dataset reduces the length of conversations found
in the original dataset, includes less task-specific data (e.g. no function calling), and does not include
advanced math examples.

3



Figure 1: Token Prediction

Figure 2: Tokenization

SFT uses the same next-token prediction objective that is used in the pre-training of base language
models, yet masks the loss from the query tokens.

The conversations from the SmolTalk dataset are formatted as lists of dictionaries. We first convert
these conversations into a templated conversation using Huggingface’s Qwen apply template function.
The apply template function adds additional system messages, which we trim from the templated
results (since it takes up unnecessary space). Then, these messages are tokenized to a length of 1280
tokens with right padding and truncation. Since we only want the model to predict the response, we
also set the labels corresponding to the prompt and padding to −100. This prevents loss calculation
during the training loop.

The supervised learning objective is optimized over prompts x and completions y that are drawn from
the dataset. We optimize the objective as follows:

max
θ

Ex,y∈D

|y|∑
t=1

log πθ(yt | x, y<t) (1)
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3.2 Direct Preference Optimization (DPO)

After fine-tuning the base model to produce a reference policy πref, we run DPO on preference data.
We use the UltraFeedback Binarized dataset [5], a pre-processed version of the original UltraFeedback
dataset. The original dataset consists of 64k prompts, each with four model completions. A score
for each completion was generated by GPT-4 using criteria like helpfulness and honesty. The
UltraFeedback Binarized dataset takes the completion with the highest score as the "chosen" response,
and one of the three remaining responses at random as the "rejected" response.

The full pipeline is shown in Figure 3.

Figure 3: DPO Method [6]

Rather than train a reward model as in RLHF, DPO parameterizes it as a function of the log-likelihoods
of the preferred and dispreferred responses. In Rafailov et al. [2], they reformulate the constrained
RL problem as a supervised preference classification problem using the following loss objective:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
(2)

The gradient of this loss function can then be calculated as:

∇θLDPO(πθ;πref) = −βE(x,yw,yl)∼D

σ(r̂θ(x, yl)− r̂θ(x, yw))︸ ︷︷ ︸
higher when estimate is wrong

 ∇θ log π(yw|x)︸ ︷︷ ︸
increase likelihood of yw

− ∇θ log π(yl|x)︸ ︷︷ ︸
decrease likelihood of yl




As seen, the gradient of the loss function increases the likielhood of the preferred completions yw and
decreases the likelihood of dispreferred completions yl. In DPO, an offline dataset of preferences is
construction D = {x(i), y

(i)
w , y

(i)
l }Ni=1 (in our case, we use the UltraFeedback dataset) and the model

πθ is optimized by minimizing LDPO for the SFT-trained model πref and D.

3.3 Curriculum Learning

The intuition behind curriculum learning is that preference pairs that are more dissimilar (i.e. one
response is more clearly better) are easier for the model to learn and thus should be fed in first. The
model first trains with this easier data and later moves on to examples that are scored closer together
as it improves, as shown below.

There are two approaches to curriculum learning that we implement: non-iterative and iterative. The
non-iterative approach uses the SFT model as the reference model πref throughout the entire training
process. In contrast, the iterative approach uses the model of the previous iteration as the reference
model for the next iteration. The first iteration uses the base SFT model as the reference model. This
can be seen in Figure 4. In our iterative curriculum learning experiments, we execute 1 epoch over
the easy dataset and 5 epochs each over the medium and hard datasets in order to allow the model to
converge. The loss for iterative curriculum learning is:
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Figure 4: The top section of the figure demonstrates how preference pairs are created in curriculum
learning: the highest-scored response is paired with each of the rejected responses and are ranked in

descending order of pairwise rating difference. Each iteration of curriculum learning DPO is
performed with slightly harder data. This figure outlines the iterative approach to curriculum learning

[3].

L(πi+1
θ ;πi

θ)
= −E(x,yi+1

w ,yi+1
l )∼D log σ

(
β log

πi+1
θ (yi+1

w | x)
πi
θ(y

i+1
w | x)

− β log
πi+1
θ (yi+1

l | x)
πi
θ(y

i+1
l | x)

)
(3)

3.4 Other Considerations

Initialization with supervised fine tuning is a crucial beginning step. The performance of the initialized
model greatly determines the outcome of subsequent models. For this reason, it is important to balance
SFT so that the model does not overfit on the dataset, potentially leading to catastrophic forgetting in
which the initially language-capable LLM loses its ability to generate intelligible responses.

A second risk is that using general preference ratings for responses during DPO can lead to the
model optimizing away from decent quality responses just because they are marginally worse than a
prompt in the same example pair. This can lead to unintended behavior in which the model decreases
performance by learning against generating the positive characteristics of the rejected responses.

4 Experiments

We run three experiments to study which approach to DPO learning is more performative in contrast
to the standard SFT model:

1. Standard DPO vs SFT

2. Non-iterative Curriculum Learning DPO vs SFT

3. Iterative Curriculum Learning DPO vs SFT

We also look at the performance of πbase (the pre-trained Qwen 2.5 0.5B Instruct model) vs. πSFT.
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We train the base SFT model for one full epoch on the smol-smoltalk dataset, where we see con-
vergence in both train and validation loss. We train all three DPO models on one epoch of the
Ultrafeedback-Binarized dataset.

Our evaluation pipeline uses vllm, a high-through and memory efficient inference engine for
LLMs [7]. We sample responses from the following models: πbase, πSFT, πDPO, πDPO-Iter-Curriculum,
πDPO-NonIter-Curriculum. We then use a parametric reward model for scoring, specifically the Llama 3.1
Nemotron 70B Reward Model [8] [9]. Given the prompt, the reward model generates a score for
each model’s response. For each prompt, we calculate a per-prompt win-rate binary label, where 1
corresponds to the reward of the trained model being higher and 0 corresponds to the reward of the
reference model being higher. The win-rate for each trained model is the average of the binary label
over all held-out test prompts.

5 Results & Analysis

5.1 SFT Baseline

Training loss decreased rather quickly when fine-tuning the Qwen base model on the smol-smoltalk
dataset using SFT. After one full epoch, we achieved a training loss of 0.585 and a validation loss of
0.483. The training was relatively stable and loss decreased exponentially. The SFT model achieved
an 80.0% win-rate on the leaderboard.

Figure 5: Training Loss of SFT on smol-smoltalk (LR = 1e-06)

5.2 DPO

Training loss also decreased on DPO throughout the epoch, as well as the reward margins and reward
accuracies, achieving a final train loss of 0.66 and validation loss of 0.68. The DPO model achieved a
81.0% performance over the base Qwen 2.5 0.5B Instruct model and a 66.0% win-rate over the SFT
model. See Figures 12, 13, 14.

Figure 6: Training Loss of DPO Figure 7: Training Margins
(Chosen Rewards - Rejected

Rewards) of DPO

Figure 8: Training Accuracy
(Probability of Chosen Response

> Probability of Rejected
Response) of DPO
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5.3 DPO with Iterative Curriculum Learning

We see improvement over the SFT model with iterative curriculum learning, but slightly worse
performance compared to the standard DPO approach.

Figure 9: Training Loss of DPO Figure 10: Training Margins
(Chosen Rewards - Rejected

Rewards) of DPO

Figure 11: Training Accuracy
(Probability of Chosen Response

> Probability of Rejected
Response) of DPO

5.4 DPO with Non-Iterative Curriculum Learning

We see improvement over the SFT model with non-iterative curriculum learning, but once again
slightly worse performance compared to the standard DPO approach.

Figure 12: Training Loss of DPO Figure 13: Training Margins
(Chosen Rewards - Rejected

Rewards) of DPO

Figure 14: Training Accuracy
(Probability of Chosen Response

> Probability of Rejected
Response) of DPO

5.5 All Results

Overall, curriculum learning does not seem to offer any benefit over the standard DPO approach.

Experiment Trained Model Win-Rate

SFT vs Base Qwen 2.5 0.5B Instruct 0.800

DPO vs Base Qwen 2.5 0.5B Instruct 0.810

DPO vs SFT 0.660

Non-Iter Curriculum DPO vs SFT 0.610

Iter Curriculum DPO vs SFT 0.630
Table 1: Win-Rate Results from experiments

6 Conclusion

In the SFT → DPO pipeline we used to fine-tune a large language model on instruction following
tasks, the use of curriculum learning DPO was not shown to be effective at improving performance.
We saw improvements over the SFT-trained model but slightly lower scores than the standard DPO
approach. Previous literature suggests that curriculum learning might be most effective when the
dataset of examples is unbalanced and the model loss doesn’t initially decrease. In this way, the
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curriculum approach can "kickstart" the learning process. Because we already performed supervised
fine-tuning on the smol-smoltalk dataset, our model was already warm-started and simply might not
have needed curriculum learning to perform well on harder examples. Additionally, the preference
dataset included a wide and balanced range of preference pair difficulties. Because of this, we believe
that the use of SFT to warm-start the model, and the balanced nature of the preference dataset, could
have negated any advantanges that curriculum learning can offer.

7 Limitations and Future Work

Due to limited compute, we only perform one epoch of both DPO and SFT. For SFT, this is unlikely
to be a huge issue, since we also do not want the model to overfit too much on the dataset. However,
for DPO, it is possible that training the model for a longer period of time could lead to better results.
In the future, it would be helpful to explore this possibility by learning on more epochs.

Additionally, in our DPO experiment, we leverage general quality ratings for responses. However,
these overall ratings don’t fully capture the exact characteristics in which each response excels. In this
way, optimizing for general ratings can cause the model to discard beneficial behaviors observed in
discarded responses and encourage disadvantageous ones in accepted responses. Could implementing
ratings for a diverse set of specific characteristics and performing multi-objective optimization toward
each measure lead to even better performance?

8 Ethical Considerations

Existing bias in preference data can bias the fine-tuned model when performing preference optimiza-
tion. Agiza et al., in a study of how data selection impacts political biases in large language models,
found that running DPO on biased preference data will successfully influence the trained model to
reflect those biases [10]. More specifically, they find that right-leaning preference data will shift the
model responses to the right, and same when training on left-leaning data.

However, despite the potential risks of preference optimization, it can also be used to address and
reduce bias in LLM output. Ahmed Allam proposes BiasDPO, a preference optimization approach
to mitigate gender, racial, and religious biases in LLM-generated English text [11]. The dataset
is manually created and encompasses a diverse range of prompts with both biased and unbiased
completions. They implement the loss function proposed in Identity Preference Optimization (IPO)
[12] that adds a regularization term to the DPO loss function to prevent overfitting on preference data,
shown below:

LIPO(πθ;πref) = −E(x,yw,yl)∼D

[(
log

(
πθ(yw | x)πref(yl | x)
πθ(yl | x)πref(yw | x)

)
− β−1

2

)2
]

(4)

The BiasDPO approach beats most other existing models on bias benchmarks, specifically with
regards to gender and racial bias, toxicity, and truthfulness. While we did not implement any bias
safeguards for the purpose of this assignment (which only aimed to score performance on instruction-
following tasks and was not meant for deployment), it is critical to consider this dimension when
releasing models for general access.

References
[1] Petru Soviany. Curriculum learning with diversity for supervised computer vision tasks, 2020.

[2] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2024.

[3] Pulkit Pattnaik, Rishabh Maheshwary, Kelechi Ogueji, Vikas Yadav, and Sathwik Tejaswi
Madhusudhan. Curry-dpo: Enhancing alignment using curriculum learning ranked preferences,
2024.

[4] Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martín Blázquez, Guilherme Penedo,
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